The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum
نویسندگان
چکیده
Plasmodium falciparum is the causative agent of the most burdensome form of human malaria, affecting 200-300 million individuals per year worldwide. The recently sequenced genome of P. falciparum revealed over 5,400 genes, of which 60% encode proteins of unknown function. Insights into the biochemical function and regulation of these genes will provide the foundation for future drug and vaccine development efforts toward eradication of this disease. By analyzing the complete asexual intraerythrocytic developmental cycle (IDC) transcriptome of the HB3 strain of P. falciparum, we demonstrate that at least 60% of the genome is transcriptionally active during this stage. Our data demonstrate that this parasite has evolved an extremely specialized mode of transcriptional regulation that produces a continuous cascade of gene expression, beginning with genes corresponding to general cellular processes, such as protein synthesis, and ending with Plasmodium-specific functionalities, such as genes involved in erythrocyte invasion. The data reveal that genes contiguous along the chromosomes are rarely coregulated, while transcription from the plastid genome is highly coregulated and likely polycistronic. Comparative genomic hybridization between HB3 and the reference genome strain (3D7) was used to distinguish between genes not expressed during the IDC and genes not detected because of possible sequence variations. Genomic differences between these strains were found almost exclusively in the highly antigenic subtelomeric regions of chromosomes. The simple cascade of gene regulation that directs the asexual development of P. falciparum is unprecedented in eukaryotic biology. The transcriptome of the IDC resembles a "just-in-time" manufacturing process whereby induction of any given gene occurs once per cycle and only at a time when it is required. These data provide to our knowledge the first comprehensive view of the timing of transcription throughout the intraerythrocytic development of P. falciparum and provide a resource for the identification of new chemotherapeutic and vaccine candidates.
منابع مشابه
DeRisi. The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum. PLoS Biology, 1(1):e5, 2003.
[2] L. Bao and Z. Sun. Identifying genes related to drug anticancer mechanisms using support vector machine. Tissue classification with gene expression profiles. Expression profiling of the schizont and trophozoite stages of Plasmod-ium falciparum with a long-oligonucleotide microarray.based analysis of microarray gene expression data by using support vector machines.tional relationships betwee...
متن کاملMining the malaria transcriptome.
Malaria remains the most devastating parasitic disease worldwide, and is responsible each year for >500 million infections and between one million and two million deaths of children under five years of age. Plasmodium falciparum is the most prevalent and deadly malaria parasite of humans, and a huge amount of data about it is now publicly available following completion of its genome sequence, t...
متن کاملPernicious plans revealed: Plasmodium falciparum genome wide expression analysis.
The asexual intraerythrocytic developmental cycle (IDC) of Plasmodium falciparum is responsible for the majority of the clinical manifestations of malaria in humans. Although malaria has been studied for over a century, the elucidation of the full genome sequence of P. falciparum has now allowed for in-depth studies of gene expression throughout the entire intraerythrocytic stage. As the mainst...
متن کاملNew insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq
Recent advances in high-throughput sequencing present a new opportunity to deeply probe an organism's transcriptome. In this study, we used Illumina-based massively parallel sequencing to gain new insight into the transcriptome (RNA-Seq) of the human malaria parasite, Plasmodium falciparum. Using data collected at seven time points during the intraerythrocytic developmental cycle, we (i) detect...
متن کاملPatterns of gene-specific and total transcriptional activity during the Plasmodium falciparum intraerythrocytic developmental cycle.
The relationships among gene regulatory mechanisms in the malaria parasite Plasmodium falciparum throughout its asexual intraerythrocytic developmental cycle (IDC) remain poorly understood. To investigate the level and nature of transcriptional activity and its role in controlling gene expression during the IDC, we performed nuclear run-on on whole-transcriptome samples from time points through...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Biology
دوره 1 شماره
صفحات -
تاریخ انتشار 2003